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ARRANGEMENT OF FUSIFORM BODIES TO REDUCE THE WAVE DRAG AT
SUPERSONIC SPEEDS !

By Mogris D. FriepmaN and Doris CorrN

SUMMARY

By means of linearized slender-body.- theory and reverse-flow
theorems, the wave drag of a system of fusiform bodies at zero
angle of attack and supersonic speeds is studied to determine the
effect of varying the relative location of the component paris.
The investigation is limited to two-body and three-body arrange-
ments of Sears-Haack minimum-drag bodies. It i found that
in certain arrangements the interference effects are beneficial,
and may even resull in the two- or three-body system having no
more wave drag than that of the principal body alone. The most
Javorable location appears to be one in which the maximum
cross-section of the auziliary body is slightly forward of the
Mach cone from the tail of the main body. The least favorable
18 the region between the Mach cone from the nose and the fore-
cone from the tail of the main body.

INTRODUCTION

When an airplane is to be equipped with external fuel tanks
or prominent nacelles, the effect on the drag will vary widely
with the location of such auxiliary bodies relative to the
other parts of the airplane. In reference 1, calculations were
made of the theoretical interference drag between the fusi-
form bodies of some typical arrangements, under the condi-
tions of supersonic speed and zero angle of attack. Later
developments in linear theory have provided a simpler
method of performing such calculations, and the present
paper is a revision of reference 1 to take advantage of these
developments. Both reference 1 and the present work are
largely based on suggestions of R. T. Jones.

Two arrangements will be considered—a two-body com-
bination, as when one body is suspended beneath another,
and a laterally symmetric three-body arrangement. The
radial and streamwise displacements of the auxiliary body
or bodies relative to the main one will constitute the param-
oters of the investigation. The calculations will be made for
combinations of Sears-Haack minimum-drag bodies (refs. 2
and 3), but the method of analysis is applicable to any slender
shapes for which the pressure fields are known. In particular,
it may be mentioned that the main body and auxiliary bodies
need not be similar.

! Bupersedes NACA RM AS51120, “Arrangement of Bodles of Revolution In Supersonic
Flow to Reduce Wave Drag,” by Morris D. Friedman, 1851, and NAOA TN 3345, by Mor-
rls D, Friedman and Dorls Cohen, 1954.

ANALYSIS
REVERSED.FLOW THEORY

A basic condition of the analysis is that the bodies be
slender enough so that the resulting disturbance of an on-
coming stream may be represented by a linear distribution
of singularities—sources for a body of revolution, or higher-
order singularities for cambered bodies—of which the
strength may be determined from local conditions. In that
case, simultaneously reversing the direction of flow and the
gign of the source strength associated with a given isolated
body does not change the shape of the body, and the re-
versed-flow theorems of reference 4, which are stated in terms
of source distributions, may be applied to the bodies them-
selves. However, the streamlines at a distance from the
body are altered, so that it is not generally to be expected
that the theorems would be applicable to a system of bodies
of prescribed geometry. The location of the individual
bodies of the system in the streamlines of the other bodies
has the effect of introducing additional camber into the
boundary conditions and thereby modifying the equivalent
distribution of singularities. Calculations made to investi-
gate the effect of such induced camber on the drag of slender
bodies indicate that the magnitude is not likely to be any -
significant fraction of the thickness drag.? The additional
drag introduced by the induced camber will therefore be
ignored. With this simplication, the drag of & system of
slender bodies may be said to remain unchanged when the
direction of motion is reversed.

In the present calculations, in which each of the bodies is
symmetrical fore and aft, the first consequence of the
reversibility property is that only rearward (or forward)
displacements of the auxiliary bodies relative to the main
body need be considered.

The reversibility property also leads to the possibility of
combining the pressure fields for forward and reverse motion
before computing the drag, and taking half the resulting drag
as the drag in either direction. This point may be demon-
strated as follows:

Regarding the body as stationary in an oncoming stream,
let dR/dz be the local inclination of any element of surface

2 For example, the drag duo to parabollc camber of a line of sources corresponding to a
Sears-Haack bodyis -139 (A2-1)A3 times the drag of the uncambered body, & belng the maxitaum
camber fn percent of body length.
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area dS (of a body of revolution) to the stream and ¢,, be

the pressure coefficient at the centroid of the element (see
fig. 1). Then the corresponding element of drag is simply
(to the first order)

g¢,.(dR/dz)dS

where ¢ is the free-stream dynamic pressure and S is the
surface area. Now, let the body be reversed on the z axis
(fig. 2), with its tail headed into the relative wind. At the

ds %\;fﬁ/dx
A {
Q .
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et .
Freurke 1—Drag and relative wind corresponding to forward motion
of the body.
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Figurp 2.—Drag and relative wind in reverse flow.

previously considered element of area a new pressure coeffi-
cient ¢, will result; the slope dR/dz will merely be reversed
in sign. The sum of the two elements of drag will be

4D D, =g(e,,~c,) (5 48 ®

where the subscript f refers to quantities corresponding to
forward motion and r to rearward, or reverse flow. The
total combined drag is the integral of this quantity, and is
twice the drag of the body traveling in either direction.

The foregoing device, similar-to one first suggésted in
reference 5, results in considerable mathematical simplifica-
tion in many cases. Thus, the argument of reference 6 that
in the combined flow field the drag of one wing due to the
field of another is equal to that of the second due to the
field of the first can be extended to apply to systems of slender
bodies under the conditions outlined above. Then only one
calculation of the interference drag need be made for each
pair of bodies; for example, in the present analysis only the
drag of the auxiliary body due to the combined pressure
field (c;,—c,,) of the main body will be calculated.

PRESSURE FIELD OF A SEARS-HAACK BODY

In the examples to be worked in this paper, all bodies will
be closed bodies of revolution having individually the form
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for minimum theoretical wave drag for given length and
volume. This shape (refs. 2 and 3) is given by

R (z)=c(B—a2)S 2)

(See Appendix for a list of symbols.) The flow about one
such body can be calculated as the flow due to a distribution
of sources and sinks along the body axis, the source strength
J(@) being related to the body geometry by the equation
(vef. 7)

ds, dR’

The pressure coeficient near the body is given to the first
order (see ref. 8) by the relation

s al (ta)

in which #=0¢/0z is the streamwise component of the
perturbation velocity and v=0¢/0r the radial component.
Inssmuch as the latter component falls off with distance
from the body as 1/r and its contribution to the pressure
decreases with 1/r% it may be possible to neglect the second
term in ¢, in computing the interference drag. It will be
shown by a numerical example that this simplification is in
fact permissible in the present investigation. At the surface
of the body, the ratio 9/V is, to first order, the streamwise
slope of the body and, in the case of the symmetrical bodies
under consideration, the integration for the drag will result
in canceling out all effects of the radial component of velocity.
Thus it is sufficient for our purpose to retain only the linear
term in equation (4a), writing

ey (4b)
From reference 7,
do (= ___f'@)dE ®)
2z nose V(@—E)'—p?
From equations (2) and (3), f/(£) is in the present case
3 “2v, P28
.‘/(p_. 6
and

=~ —3
=T P—Ple—tr—p

It should be remarked that for £>! the integrand vanishes,
and that ¢, is zero when z2—gr<—L.

The integration in equation (6) yields three different
expressions, depending on whether

pr—i<a<l—gr (Region I)
[i—pr{<a<l+Br (Region II)
or

z>14-Br (Region III)
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Frgurn 3.—Regions in pressure field around isolated Sears-Haack body.
The three regions defined above are shown in figure 3. The
expressions for the approximate pressure coefficient are
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The quantities K,, E, and A, are defined in the Appendix
and tabulated in reference 9; A, is tabulated also in reference
10.

The magnitude of the approximate pressure coefficient, as
given by equation (7), at the surface of a body of ﬁneness
ratio 10 at M=+/2 is plotted in figure 4, together with the
more accurate values obtained by the use of equation (4a).
It is apparent that the difference, in the case of so slender a
body, is not great and, as previously noted, will diminish
rapidly with distance.

An isometric sketch of the pressure coefficient calculated
by equations (7), (8), and (9) is shown in figure 5. Of par-
ticular interest is the logarithmic infinity along the Mach
cone from the tail of the body. Except at the body itself,
the pressure is finite everywhere else and goes smoothly
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Freums 4—Pressure coefficient on Sears-Haack body, fineness ratio 10,
at M=+/2. Effect of v* term.

through the forecone from the tail, in spite of the change in
the form of its mathematical expression.

COMBINED PRESSURE FIELD

If now the body is reversed in heading and the resulting
pressure field subtracted from that given above, the combined
pressure field is found as

Col@)=cy(z) —cp(—2) (10)
because of the fore-and-aft symmetry of the body. The
various regions of the combined field are shown in figure 6.

Itis seen from figure 6 that there is only one region in which
any possibility of further mathematical simplification ap-
pears. In this region (where Region I and Region I of the
roversed field overlap) We.have to consider

Cop="0Cp, (&) —Cp (—2) (11)
Through the relation (ref. 10, p. 36)
A, (%) +4,(,k)=1+E"K, sin ¢ sin ¢
when
tan y tan {5=%
equation (11) reduces to
Cpp=—06mcx (12)

Thus, the pressure gradient of the combined field is a con-
stant in the neighborhood of the body, as specified in refer-
ence 6 for minimum wave drag with a given volume.?

CALCULATION OF THE WAVE DRAG

As previously indicated, it is proposed in calculating the
drag to ignore the drag introduced by the curvature of the
flow due to adjacent bodies, and therefore to replace each
body by the equivalent source distribution in a uniform
stream. If, following this course, we consider the entire
flow field to be essentially the result of the superposition of
the fields of the individual bodies, we have to compute

(a) one-half the drag of each body in its own combined
pressure field,

3 Although reference 6 deals specifically with thin wings, it is readfly shown that the sams
considerations hold for slender bodies under the assumptions used herein.
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F16URE 5.—Isometric sketch of the pressure distribution in the field surrounding a single Sears-Haack body, fineness ratio 10, at M=+/2,

(b) the drag of each auxiliary body in the combined field
of the main body, and

(c) the drag of one auxiliary body in the field of the other,
if more than one auxiliary body is inecluded. It may be seen
that the drag of the second body in the field of the first is
taken care of by the factor cf 2 introduced by the use of the
combined pressure field.
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Figure 6.—Regions in combined pressure field of a single body.” -

If equation (1) is applied to a body of revolution, the total
drag in combined flow may be written

— +_ dR , +_ dR?
D—21rqf_l c, R T (la:—vrgf_l O~ dz (13)
and, for the Sears-Haack bodies,
2
%R;=—3cxw/l’—~_x’ (14)

The drag of each body due to its own pressure field is then
one-half that obtained by substituting from equations (12)
and (14) in equation (13), or

D,=9x%gc* f +: Y

wglic? (15:

Wl

or, since the maximum cross-sectional area is, from equatior
@),

Sp=7'l'013 (1 6
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the drag in terms of frontal ares is

9 SF
Do=§ T l—: q (17)

which is in agreement with the value given in reference 2.

The interference drag is calculated by substituting in
equation (13) the pressure coefficient associated with one
body and the value of dR3/dx associated with the other.
Considering first a two-body combination, we may take the
origin of coordinates at the center of one, which will be
designated the “main” body, and let the center of the
auxiliary body be displaced from it a distance 2, downstream
and a distance r, laterally or vertically. Then, if for & first
approximation the pressure field of the main body is assumed
not to vary significantly in the distance between the axis of
the auxiliary body and its surface, the values of ¢, are ob-
tained from equations (12), (8), and (9) by letting r=r,.
Equation (14) is modified to take into account the displace-
ment of the auxiliary body:

2

7:0—=—'301(95—$0)V bLP—(z—x0)* (18)

and the geometric characteristics of the second body are
used to determine ¢, and Z;.

It is immediately apparent that if the auxiliary body lies
entirely within Region I (fig. 6), the value of ¢,, and therefore
of the drag, is independent of r,. In fact, since the pressure
gradient is a constant throughout the region, the drag is
entirely independent of position so long as the body remains
within Region I. The interference drag in this case is simply

D1=g A gliteey 19)

or, more generally, Di/q equals the pressure gradient 6mc
times the volume of the auxiliary body, regardless of its
shape. It follows that, since the interference drag cannot
be reduced by redistributing the additional volume within
this region, the Sears-Haack body remains the optimum
auxiliary body for this configuration, regardless of inter-
ference effects.* It is possible that in a region of more
rapidly changing pressure gradient a significantly different
ghape for minimum drag would be found.

In Region IT the pressure gradient changes from negative
to positive (see fig. 5) and a small body placed so as to
take advantage of this buoyancy would conceivably experi-
ence a negative interference drag, or thrust, which would
act to reduce the total drag of the combination. Substitu-
tion of ¢,,, and, when required, ¢, in equation (13) results
in integrals which can be evaluated only numerically. We
therefore proceed at this point to the consideration of nu-
merical examples.

NUMERICAL CALCULATIONS

For an exploratory investigation, the simple case of two
bodies of fineness ratio 10, the small body having one-half

¢ An Investigation by Rennemann (ref. 11) of a simflar interference problem, with
main body parabollc in shape, but with the Jocation of the auxiliary body similarly restricted
to Reglon I, indicates an optimum aoxiliary body whase form and added drag differ only
slightly from thoss of a Sears-Haack body.
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the length of the main body, was chosen. With the half-
length of the larger body taken as unity, the other parameters
of the problem were

l1=%
¢=0.01
01=0.02

In compressible flow, the Mach number and cross-stream
dimensions enter together in the form fr. The investigation
covered values of 8r,/l ranging from 0.25 to 1.4. The effect
of streamwise displacement of the centers was explored to
a distance equal to the length of the larger body.

The interference between the two outer bodies of a three-
body configuration was calculated in the case of gr,/[=0.25
(assuming the distance between the smaller bodies to be
double the distance of each from the main body) and the
effect on the drag was found to be negligible. The results
to be presented are therefore equally applicable to the two-
body or three-body arrangement, only a factor of 2 in the
interference drag being required.

RESULTS AND DISCUSSION

The variation of interference drag with streamwise and
radial displacement is shown in figures 7 and 8. Because of
the symmetry of the curves, only the region to the rear of
the main body is shown. The anticipated favorable inter-
ference is observed when the small body issituated astride
the region of negative pressure gradient just ahead of the
Mach wave from the stern of the large body, the benefit of
course decreasing with increasing radial separation of the
bodies. The corresponding forward location of the small
body would be equally favorable, in accordance with the
reciprocity principle, because of the buoyancy imparted to
the large body by the wave from the stern of the small one.
The maximum drag is incurred when the auxiliary body is
added in the region enclosed by the Mach cone from the nose
of the main body and the Mach forecone from its tail.
Further outboard of this region, in line with the maximum
cross-section of the large body and just forward of the Mach
cone from its nose, is a second, small region of favorable
interference, where the pressure field of the large body acts
only on the rear of the small body, and vice versa, resulting
in unopposed thrust.

In figure 8 the sketches indicate, for M=-/2, the relative
positions of the bodies when the interference is greatest.
The situation last described is shown at 2,=0 in figure 8 (c).
From this point, or the low slightly further outboard of it
(fig. 7), areas of reduced drag extend both ways in directions
generally paralle] to the Mach lines. That running from
upper left to lower right in the figure results from the action
of the bow wave from the small body on the rear of the large
one; that in the opposite direction resulis from the bow
wave of the large body pushing on the rear of the small one.
The lowest drag of all results from the coincidence of one of
these areas with the negative-drag area associated with the
shock wave at the stern.

In figures 9 and 10 the wave drag coefficient based on total
frontal area is shown for two-body and three-body arrange-
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Figure 7.—Contour lines of interference drag. The lines pass through locations of the center of the auxiliary body which result in the indioated
values of interference drag per unit added frontal area.
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Ficure 8.—Interference drag per unit added frontal area.

ments. In connection with figure 10 it may be noted that
the bodies need not be side by side as shown. If the small
bodies are suspended below the wing, the distance between
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Fiaure 8.—Continued.
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them may be less than 2r,. However, the results shown
will still apply as long as the bodies are not so close as 1o
give rise to appreciable additional interference drag.

Figures 9 and 10 indicate that in frictionless potential
flow it might be possible to increase the volume by as much
as 25 percent (three-body arrangement) and at the same time
actually decrease the wave drag. In practice, of course, the
additional friction drag might easily nullify any such gain.
Nevertheless, if there are to be auxiliary bodies. the impor-
tance of a careful selection of their relative positions scems
clear.
AMES AERONAUTICAL LLABORATORY

NarT1oNAL ADvisorY COMMITTEE FOR AERONATTICS

Morrerr FieLp, CaLir., September 8, 1954
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APPENDIX
SYMBOLS
. .. i . J {g- 14 free-stream velocity
coefficient containing body dimensions, B z streamwise coordinate, origin at the center of body
value of ¢ for auxiliery body z, streamwise coordinate of center of auxiliary body,
. Dy measured from center of main body

wave-drag coefficient, 75 8 /iy '
. . D, A, (k) Heumann’s elliptic function, E,k)F(y,k’)+
interference drag coefficient, - o K EWk)— K, Fyk), tabulated in rofor-
local pressure coefficient ences 9 and 10
pressure coefficient in forward motion £ streamwise coordinate of source, origin at conter
pressure coefficient in reversed motion of body
pressure coefficient in ‘“combined” field, ¢, —¢s, @ perturbation velocity potential
wave drag ¥ argument of incomplete elliptic integrals in 4,
wave drag of isolated body (with subscripts to denote various values)
interference drag
wave drag in forward motion REFERENCES
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